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Abstract
The (k, r) admissible Jack polynomials, recently proposed as many-body
wavefunctions for non-Abelian fractional quantum Hall systems, have been
conjectured to be related to some correlation functions of the minimal model
WAk−1(k + 1, k + r) of the WAk−1 algebra. By studying the degenerate
representations of this conformal field theory, we provide a proof for this
conjecture.

PACS numbers: 73.43.−f, 11.25.Hf

1. Introduction

The conformal symmetry is extremely powerful in the study of two-dimensional (2D) massless
quantum field theories because the algebra of its generators, the Virasoro algebra, is infinite
dimensional [1, 2]. The Hilbert space of the simplest family of conformal field theories
(CFTs) is built from the representations of this algebra. In these theories, the correlation
functions satisfy differential equations which are related to conformal invariance and to the
degeneracy of the representations of the Virasoro algebra [1, 2]. In particular, among these
representations, there are fields which obey a so-called second-order null-vector condition.
This condition implies that any correlation function involving these fields satisfies a second-
order differential equation. As has been pointed out in different works (see for instance
[3, 4] and references therein), these differential equations can be related to differential operators
which define the Calogero–Sutherland quantum Hamiltonian ([5]). The eigenstates of these
many-body Hamiltonians, which describe n particles interacting with a long-range potential
with coupling α, are Jack polynomials (Jacks, defined below) [6, 7]. These are symmetric
functions in n variables indexed by partitions λ and by parameter α.

For a given number of variables n and for each pair of positive integers (k, r) such that
k + 1 and r − 1 are coprime, one can define a Jack, which we denote by P (k,r)

n , characterized
by a negative rational parameter α = −(k + 1)/(r − 1) and by some specific partition (given
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below). The P (k,r)
n Jack satisfies the so-called (k, r) clustering conditions [8–11], i.e. it does

not vanish when k variables have the same value but it vanishes with power r when the k + 1-st
variable approaches a cluster of k particles. Due to these properties, these Jacks have been
considered as trial many-body wavefunctions for fractional quantum Hall ground states. In
particular, the P (k,r)

n states have been proposed as possible generalizations of Zk Read–Rezayi
states [16, 17] for describing new non-Abelian states [10, 11].

In [8, 9] it has been conjectured that P (k,r)
n can be written in terms of certain correlators of

a family of CFTs, the WAk−1 theories. This is a family of CFTs with W extended symmetry:
in addition to the conformal symmetry, generated by the stress–energy tensor T (z) = W(2)(z)

of spin s = 2, the WAk−1 theories enjoy additional symmetries generated by a set of chiral
currents W(s) of spin s = 2, . . . , k [12, 13]. The WA1 algebra coincides with the Virasoro
one. The representations of the WAk−1 algebras are naturally associated with the simple Lie
algebra Ak−1, and the series of minimal models WAk−1(p, q) is indexed by two integers p
and q [12, 13]. The theories WA1(p, q) correspond to the Virasoro minimal models M(p, q).
For general k > 2, however, the WAk−1 theories are much more complicated. This is mainly
because, contrary to the case of the Virasoro algebra, the null-vector conditions characterizing a
degenerate field do not in general lead to differential equations for the corresponding correlation
functions. For these reasons, the problem of computing correlation functions of these higher
spin symmetry CFTs is a hard problem [14, 15].

The conjecture that some correlation functions of the WAk−1 theory can be written in
terms of a single Jack polynomial is then quite remarkable. To be more precise, the conjecture
states that the P (k,r)

n Jack is directly related to the n-point correlation functions of certain
fields (given below) of the theory WAk−1(k + 1, k + r). This is known to be true for the case
k = 2 corresponding to the Virasoro algebra. For general k, strong evidences supporting this
conjecture have been provided in [10, 11, 18, 19] but a rigorous proof was still missing.

We consider the n-point correlation function of certain operators of the WAk−1(k+1, k+r)

theory. Using the approach described in [14], we show that these correlation functions satisfy
a second-order differential equation which is directly related to the Calogero–Sutherland
quantum Hamiltonian. This provides a proof for the above conjecture.

2. Symmetric polynomials and Jack polynomials at α = −(k + 1)/(r − 1)

A general characterization of symmetric polynomials which vanish when k + 1 variables take
the same value was initiated in the work of Feigin et al [8]. In this section, we briefly review
their results and fix our notations.

The Jack polynomials J α
λ (z1, . . . , zn) are symmetric polynomials of n variables depending

rationally on a parameter α and indexed by partitions λ, λ = [λ1, λ2ṡλn], where λi are a set
of positive and decreasing integers λ1 � λ2 � · · · � λn � 0. For more details on Jack
polynomials see [20]. Defining the monomial functions mλ as

mλ({zi}) = S
(

n∏
i

z
λi

i

)
, (1)

where S stands for the symmetrization over the n variables, the expansion of a Jack over the
mλ basis takes the form [20]

J α
λ = mλ +

∑
μ<λ

uλμ(α)mμ. (2)

2
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The dominance ordering μ � λ in the sum is defined as μ1 + · · ·+μi � λ1 + · · · λi (1 � i � n).
The Jacks J α

λ are eigenfunctions of a Calogero–Sutherland Hamiltonian HCS(α) of coupling
α [6, 7]:

HCS(α) =
⎡
⎣ n∑

i=1

(zi∂i)
2 +

1

α

∑
i<j

zi + zj

zi − zj

(zi∂i − zj ∂j )

⎤
⎦ . (3)

More specifically, one has [6, 7]

HCS(α)J α
λ (z1, . . . , zn) = ελJ

α
λ (z1, . . . , zn), (4)

where the eigenvalues ελ are given by the following formula:

ελ =
n∑
i

λi

[
λi +

1

α
(n + 1 − 2i)

]
. (5)

3. WAk−1 theories: definitions and main results

A complete construction of W symmetry algebras and their representation theories can be
found in [12, 13]. Here we briefly review the main results of a particular family of W

theories, the WAk−1 ones, already mentioned in section 1. Particular attention is paid to the
series of minimal models WAk−1(p, p′) with p and p′ being the coprime integers and to the
degeneration properties of the operators of the theory.

The WAk−1 model can be realized by a (k − 1)-component Coulomb gas. The chiral
currents W(s) can be expressed in terms of polynomials in derivatives of a k − 1 component-
free bosonic field �ϕ(z) = (ϕ1, ϕ2, . . . , ϕk−1), [12] with the correlation functions normalized
as

〈ϕa(z, z̄)ϕb(z
′, z̄′)〉 = log

1

|z − z′|2 δab. (6)

The stress–energy operator T (z) of the theory WAk−1(p, p′) takes the form

T (z) = − 1
2 : ∂ �ϕ∂ �ϕ : +i�α0∂

2 �ϕ. (7)

The vector �α0 in the above equation is the background charge [21] which is defined as

�α0 = α0�ρ = (α+ + α−)

k−1∑
a=1

�ωa, (8)

where �ωa are the fundamental weights of the Ak−1 Lie algebra and the parameters α± are
expressed in terms of p and p′ by

α2
+ = p

p′ α+α− = −1. (9)

From equation (7), the central charge c(p, p′) of the WAk−1(p, p′) models is

c(p, p′) = k − 1 − 12(�α0)
2 = (k − 1)

(
1 − k(k + 1)(p − p′)2

pp′

)
. (10)

The expressions for the other chiral currents W(s), s = 3, . . . , k − 1 in terms of the
derivatives of �ϕ are more complicated, and they are not needed for our purposes. What is
important here is that W(s)(z) (s = 3, . . . , k −1) classify, together with T (z), all the operators
of the model in terms of primaries and descendants of the chiral algebra. The usual methods,
combined with the available Coulomb gas representation, define the dimensions of primary

3
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operators and their correlation functions. In this sense, the conformal theories WAk−1 are fully
defined.

The primary fields 
�β of the theory are parametrized by the k − 1 component vector
�β. The behavior of a primary field 
�β under the action of the symmetry generators W(s) is
encoded in the operator product expansions (OPE):

T (z)
�β(w) = �β
�β(w)

(z − w)2
+

∂
�β(w)

z − w
+ · · · W(s)(z)
�β(w) =

ω
(s)

�β 
�β(w)

(z − w)s
+ · · · . (11)

The action of the chiral currents T (z) and W(s)(z) can be expressed in terms of their modes
Ln and W(s)

n defined as

T (z)
�β(w) =
∞∑

n=−∞

Ln
�β(w)

(z − w)n+2
W(s)(z)
�β(w) =

∞∑
n=−∞

W(s)
n 
�β(w)

(z − w)n+s
(12)

or equivantely:

Ln
�β(w) = 1

2π i

∮
Cw

dz(z − w)n+1T (z)
�β(w)

W(s)
n 
�β(w) = 1

2π i

∮
Cw

dz(z − w)n+s−1W(s)(z)
�β(w). (13)

The conformal dimension ��β and the ω
(s)

�β are, respectively, the eigenvalues of the zero modes

L0 and W
(s)
0 operators, L0
�β = ��β
�β and W

(s)
0 
�β = ω

(s)

�β 
�β . ��β together with the set of the

k − 2 quantum numbers ω
(s)

�β characterize each representation 
�β . In particular, the conformal
dimension ��β is given by

��β = 1

2
�β(�β − 2�α0). (14)

Note also that, from the above definitions, L−1
�β(z) = ∂z
�β(z).

The allowed values of the vectors �β are defined by the condition of complete degeneracy
of the modules of 
�β(z) with respect to the chiral algebra. The Kac table is based on the

weight lattice of the Lie algebra Ak−1, and the position of the vectors �β is found to be given
by [12]

�β = �β(n1,n2···nk−1|n′
1,n

′
2···n′

k−1)
=

k−1∑
a=1

(
(1 − na)α+ + (1 − n′

a)α−
) �ωa. (15)

Each primary operator 
�β(n1 ,n2 ···nk−1 |n′
1 ,n′

2 ···nk−1)
≡ 
(n1,...,nk−1|n′

1,...,n
′
k−1)

is then characterized by

the sets of integers (n1, . . . , nk−1|n′
1, . . . , n

′
k−1). One can show that the representation


(n1,...,nk−1|n′
1,...,n

′
k−1)

presents k − 1 null-vectors χa (a = 1, . . . , k − 1) at level nan
′
a . This

directly generalizes the well-known case of the degenerate representations of the Virasoro
algebra (= WA1 algebra) [1].

The principal domain of the Kac table contains the set of primary operators which form
a closed fusion algebra and is delimited as follows:∑

a

na � p′ − 1;
∑

a

n′
a � p − 1. (16)

As can directly be seen from the symmetries of the conformal dimensions ��β ≡
�(n1,...,nk−1|n′

1···n′
k−1)

, the operators in the Kac table are identified, up to a multiplicative factor

4
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[14], via the transformations τ, τ 2 · · · τ k−1,
(n1,...,nk−1|n′
1,...,n

′
k−1)

= 
τj [(n1,...,nk−1|n′
1,...,n

′
k−1)]

(j = 1, 2, . . . , k − 1), where

τ [(n1, . . . , nk−1|n′
1, . . . , n

′
k−1)] =

(
p′ −

k−1∑
a=1

na, n1, . . . , nk−2|p −
k−1∑
a=1

n′
a, n

′
1, . . . , n

′
k−2

)

. (17)

4. Parafermionic operators in WAk−1(k + 1, k + r) theory, correlation functions
and Jacks

According to Coulomb gas rules, the fusion of two operators 
�β1
and 
�β2

produces an operator


�β3
in the principal channel with �β3 = �β1 + �β2, namely 
�β1

×
�β2
= 
�β3

+ · · · where the dots
indicate the non-principal fusion channels. The non-principal channels follow the principal
one by shifts realized by the roots ei (i = 1, . . . , k − 1) of the Ak−1 Lie algebra. A channel
associated with an operator which lies outside the Kac table (16) does not enter the fusion
(i.e. the associated structure constant vanishes). The operator algebra can then easily be
determined.

Let us now consider the model WAk−1(k + 1, k + r) where p = k + 1 and p′ = k + r . By
using the Coulomb gas rules, one can verify that the set of operators,

�i = 
−α− �ωi
= 
−rα+ �ωk−i

i = 1, . . . , k − 1, �i = r

2

i(k − i)

k
, (18)

forms a subalgebra, namely �i × �j = �i+jmod k . These fusion rules are only valid when
p = k + 1, because in that case the fields �i belong to the boundary of the Kac table, namely

�i = 
(1,...,1|1,...,1,2,1,...,1)
↑
i

= �i = 
(1,...,1|1,...,1,2,1,...,1)
↑

k−1

, (19)

and the usual fusion rules are truncated accordingly. The set of operators �i , which are
degenerate representations of the WAk−1 algebras, forms then an associative Z

(r)
k parafermionic

algebra [22–26] with a fixed central charge given by c(k + 1, k + r); see equation (10). In
particular, the �i operators can be identified with the parafermionic chiral currents with Zk

charge equal to i. Note that the dimensions of the fields �i and �k−i are the same. This reflects
the fact that the correlation function of �i operators is symmetric under the conjugation of
charge i → k − i.

In the following, we will use quite often the notation � for the field �1 or its conjugate
�k−1, and we will use � and ω(3) for the corresponding eigenvalues of L0 and W

(3)
0 . The

correlation function 〈�(z1) · · · �(zn)〉 we will consider denotes then the correlation function
〈�1(z1) · · · �1(zn)〉 = 〈�k−1(z1) · · · �k−1(zn)〉. It should be noted that for these correlators
to be non-zero, n should be a multiple of k.

It has been conjectured [8, 9, 11, 18] that these n-point correlation functions
〈�(z1) · · · �(zn)〉 can be written in terms of a single Jack polynomial. Namely the conjecture
is that

〈�(z1) · · · �(zn)〉 = P (k,r)
n ({zi})

∏
i<j

(zi − zj )
−r/k. (20)

P (k,r)
n is the following Jack in n variables:

P (k,r)
n ({zi}) = J

−(k+1)/(r−1)

λ ({zi}), (21)

where

λ = [Nφ, . . . , Nφ︸ ︷︷ ︸
k times

, Nφ − r, . . . , Nφ − r︸ ︷︷ ︸
k times

, . . . , r, . . . , r︸ ︷︷ ︸
k times

] (22)

5
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and

Nφ = r(n − k)

k
. (23)

Note that the above notation has been inherited from the FQH notations, where Nφ denotes
the magnetic flux. P (k,r)

n describes lowest Landau-level bosonic particles at filling fraction
ν = r/k.

5. Second-order differential equations for the n-point functions 〈Ψ(z1)Ψ(z2) · · ·Ψ(zn)〉
We consider the n-point correlation function 〈�(z1)�(z2) · · · �(zn)〉 of the WAk−1(k+1, k+r)

theory, and we show that these functions satisfy a particular second-order differential equation.
We can prove then that these correlation functions are written in terms of a single Jack.

5.1. WAk−1 symmetry: Ward identities

The possible form of a general correlation function is restricted by the WAk−1 symmetry. More
specifically, each correlation function satisfies a Ward identity associated with each symmetry
current T (z) and W(s), s = 3, . . . , k. These identities can easily be obtained from equation
(11). For the stress–energy tensor T (z) and W(3)(z) we have

〈T (z)�(z1) · · · �(zn)〉 =
n∑

j=1

(
�

(z − zj )2
〈�(z1) · · · �(zn)〉

+
1

(z − zj )
〈�(z1) · · · ∂j�(zj ) · · ·〉

)
(24)

〈W(3)(z)�(z1) · · · �(zn)〉 =
n∑

j=1

(
ω(3)

(z − zj )3
〈�(z1) · · · �(zn)〉

+
1

(z − zj )2
〈�(z1) · · · W(3)

−1 �(zj ) · · ·〉

+
1

(z − zj )
〈�(z1) · · · W(3)

−2 �(zj ) · · · �(zn)〉
)

. (25)

By demanding that the functions 〈T (z)�(z1) · · · �(zn)〉 and 〈W(3)(z)�(z1) · · · �(zn)〉 be
regular at z → ∞ and using the transformations law of T (z) and W(3)(z) under a conformal
map, one can easily verify that the functions 〈T (z) · · ·〉 and 〈W(3)(z) · · ·〉 behave, respectively,
like

T (z) ∼ 1

z4
and W(3)(z) ∼ 1

z6
asz → ∞. (26)

Comparing the asymptotics (26) and the Ward identities (24) and (25), one can derive a set of
relations satisfied by the correlation functions 〈�(z1) · · · �(zn)〉. For instance, using equation
(26) in equation (24) one has

n∑
j=1

∂j 〈�(z1) · · · �(zn)〉 = 0 (27)

n∑
j=1

(
zj ∂j + �

) 〈�(z1) · · · �(zn)〉 = 0 (28)

6
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n∑
j=1

(
z2
j ∂j + 2zj�j

) 〈�(z1) · · · �(zn)〉 = 0. (29)

Relations 27–29 take the form of simple differential equations and impose the invariance of the
correlation function 〈�(z1) · · · �(zn)〉 under global conformal transformations [1]. As shown
in [14], anagously to the case of the conformal symmetry, one can derive a set of relations
associated with the symmetry generated by the spin 3 current W(3)(z). Again, using equation
(26) in equation (25) one obtains the following five relations:

n∑
j=1

〈�(z1) · · · W(3)
−2 �(zj ) · · · �(zn)〉 = 0 (30)

n∑
j=1

〈�(z1) · · · (zjW
(3)
−2 + W

(3)
−1

)
�(zj ) · · · �(zn)〉 = 0 (31)

n∑
j=1

〈�(z1) · · · (z2
jW

(3)
−2 + 2zjW

(3)
−1 + ω(3)

)
�(zj ) · · · �(zn)〉 = 0 (32)

n∑
j=1

〈�(z1) · · · (z3
jW

(3)
−2 + 3z2

jW
(3)
−1 + 3zjω

(3)
)
�(zj ) · · · �(zn)〉 = 0 (33)

n∑
j=1

〈�(z1) · · · (z4
jW

(3)
−2 + 4z3

jW
(3)
−1 + 6z2

jω
(3)

)
�(zj ) · · · �(zn)〉 = 0. (34)

We stress that the above set of relations are very general constraints of the WAk−1 theory.
Although we have written down these relations for the specific case of the correlation function
under consideration, any primary fields correlation function of the WAk−1 theory satisfies
constraints of the same kind.

5.2. WA1(3, 2 + r): minimal models of the Virasoro algebra

The WA1(3, 2 + r) theories, corresponding to k = 2, coincide with the minimal model
M(3, 2 + r). Notwithstanding the fact that in this case the relation between correlation
functions in Virasoro minimal models and Jacks is quite well known, we discuss briefly the
k = 2 case since we shall investigate the more complicated cases k > 2 in an analogous
fashion.

As has been observed in [23, 24], the Z2 parafermionic operator �1 (18) coincides
with the 
(1|2) operator , � = �1 = 
(1|2). The operator � has conformal dimension
� = �(1|2) = r/4 and the �� fusion realizes the Z

(r)
2 parafermionic algebra with central

charge c = 1 − 2(r − 1)2/(2 + r); see equation (10). Moreover, the operator � satisfies a
second-level null-vector χ2 condition [1]:(

L−2 − 3

r + 2
L2

−1

)
� = 0. (35)

The degeneracy condition (35) implies that correlation functions containing � obey
a second-order differential equation. Let us consider a general correlation function
〈
(z)
1(w1)
2(w2) · · ·〉 involving some primary operators 
,
1, . . .. By using equations

7
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(11), (13) and the Cauchy theorem, one can always express the action of the Ln modes for
n � 1 on the primary 
 in terms of differential operators acting on the others primaries 
i :

〈(Ln
(z))
1(w1)
2(w2) · · ·〉 = −
∑

j

(n + 1)(wj − z)n�j 〈
(z)
1(w1)
2(w2) · · ·〉

−
∑

j

(wj − z)n+1∂wj
〈
(z)
1(w1)
2(w2) · · ·〉. (36)

Note that equation (36) is a more general form of the Virasoro Ward identity (24).
Summing over the singular vector equation (35) resulting from each field � and using

equation (36), one obtains the following differential equation satisfied by the n-point correlation
function 〈�(z1)�(z2) · · · �(zn)〉. Defining Hvir as

Hvir(r)=̂
n∑

i=1

⎛
⎝z2

i ∂
2
i − r + 2

3

∑
j �=i

(
r

4

z2
i

(zi − zj )2
+

z2
i ∂j

zi − zj

)⎞
⎠ (37)

one has

Hvir(r)〈�(z1)�(z2) · · · �(zn)〉 = 0. (38)

Using the result from the appendix, this can be put in the following form:

HWA1(r)〈�(z1)�(z2) · · · �(zn)〉 = 0, (39)

where

HWA1 =
∑

i

(zi∂i)
2 + γ1(r)

∑
i �=j

z2
j

(zj − zi)2
+ γ2(r)

∑
i �=j

zizj (∂j − ∂i)

(zj − zi)
+ nγ3(r)

γ1 = − r(r + 2)

12
γ2 = r + 2

6
γ3 = − r(r − 1)

12
. (40)

Let us introduce the function φ(r,k)({zi}):
φ(r,k)({zi})=̂

∏
i<j

(zi − zj )
r/k. (41)

After some algebraic manipulations, conjugation with the function φ(r,2) transforms the second-
order differential operators HWA1 , defined in equation (40), into the Calogero Hamiltonian
HCS(α) equation (3):

[φ(r,2)({zi})]HWA1 [φ(r,2)({zi})]−1 = HCS(α) − E(r) (42)

with

α = − 3

r − 1
E(r) = 1

36
rn(n − 2) [2 + n + r(2n − 5)] . (43)

One can easily verify by comparing equations (42) and (43) with equations (3)–(5) that
equations (21)–(23) are verified for k = 2. It is important to stress that the Jack solution (4)
of the eigenvalue equation (3) is the only solution with monodromies consistent with the OPE
of the operators �, i.e. with the Z

(r)
2 parafermionic algebra.

In the more general case of the WAk−1 theories with k = 3, 4, . . ., it is in general
impossible to write down differential equations for correlation functions containing one
completely degenerate field and other arbitrary fields. Generally speaking, the null-vector
conditions of the WAk−1 theory present for k > 2, in addition to the Ln Virasoro modes,
the modes W(s)

n of the higher spin currents. The action of the modes W(s)
n does not have a

8
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geometrical interpretation, i.e. they cannot be written as differential operators. This is the
essential difficulty in the analysis of the W theory correlation functions.

In the following, we will closely use the approach of [14]. We will first give a detailed
analysis of the case k = 3. From the degeneracy properties of the parafermionic operators
�, we show that the correlation functions involving n operators � satisfy a second-order
differential equation. This equation allows us to prove the conjecture 20 for the theory
WA2(4, 3 + r) (i.e. k = 3). Then we show how to generalize this result for the general case.

5.3. WA2(4, 3 + r) models

The chiral algebra contains the stress–energy operator T (z) and the W(3)(z) current of spin 3.
The explicit form of the WA2 algebra, written in terms of the commutators between the chiral
current modes, is

[Ln,Lm] = (n − m)Ln+m +
c

12
n(n2 − 1)δn+m,0 (44)[

Ln,W
(3)
m

] = (2n − m)W(3)
n+m (45)

[
W(3)

n ,W(3)
m

] = 16

22 + 5c
(n − m)�n+m +

c

360
n(n2 − 1)(n2 − 4)δn+m,0

+(n − m)

[
1

15
(n + m + 2)(n + m + 3) − 1

6
(n + 2)(m + 2)

]
Ln+m (46)

with

�n = dnLn +
∞∑

m=−∞
: LmLn−m : (47)

d2m = (1 − m2)

5
(48)

d2m−1 = (1 + m)(2 − m)

5
. (49)

The A2 weight lattice is two dimensional and the representations of the WA2 algebra

�β = 
(n1,n2|n′

1,n
′
2)

are indexed by the couple of integers (n1, n2 | n′
1, n

′
2). The Kac table

is delimited by

n1 + n2 � p′ − 1 n′
1 + n′

2 � p − 1. (50)

The �1 and �2 operators, which are identified in equation (19) as

�1 = 
(1,r+1|1,1) = 
(1,1|2,1) (51)

�2 = 
(r+1,1|1,1) = 
(1,1|1,2), (52)

generate the Z
(r)
3 parafermionic theory. In equations (51) and (52), the identifications (17) are

used. The operators �1 and �2 are Z3-charge conjugates and have the same dimension �:

� = �(1,1|2,1) = �(1,1|1,2) = r

3
. (53)

Note that �1 and �2 are distinct WA2 representations as one can directly see from the fact
that the associated W

(3)
0 eigenvalues ω

(3)

(1,1|1,2) and ω
(3)

(1,1|2,1), see equation (11), have an opposite

sign, ω
(3)

(1,1|1,2) = −ω
(3)

(1,1|2,1) [14]. Their value is given by(
ω(3)

)2 = 2�2

9

(
32

22 + 5c
(� +

1

5
) − 1

5

)
. (54)

9
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5.3.1. WA2 null-vectors conditions The fields �1 and �2, identified in equations (51) and
(52) respectively to the degenerate representations 
(1,1|2,1) and 
(1,1|1,2), are expected to have
two null-vectors at levels 1 and 2. From the commutation relations (46), one can show [12, 14]
that the fields �1 and �2, defined in equations (51) and (52), satisfy the following null-vector
conditions: (

W
(3)
−1 − 3ω(3)

2�
L−1

)
� = 0(

W
(3)
−2 − 12ω(3)

�(5� + 1)
L2

−1 − 6ω(3)(� + 1)

�(5� + 1)
L−2

)
� = 0, (55)

where ω(3) stands for ω
(3)

(1,1|2,1) (respectively ω
(3)

(1,1|1,2)) when �1 (�2) is concerned. We remark
that the fields �1 (�2) satisfy an additional third-level null-vector condition which directly
comes from the conditions (55) and the algebra (46) [14]. For our purposes, we do not need
such a condition.

Here we are interested in the n-point correlation function 〈�(z1) · · · �(zn)〉; see section
(4). As is explicitly shown in equation (55), the modes of the additional current W(3)(z) appear
in the null-vector conditions (55).

5.3.2. Second-order differential equation for 〈�(z1) · · · �(zn)〉 We show here that the
null-vector conditions (55) allow us to derive a second-order differential equation for
〈�(z1) · · · �(zn)〉. To take care of the modes W

(3)
−2 and W

(3)
−1 , one can use any of the relations

(30)–(34), together with the null-vector conditions (55), to obtain a relation involving purely
the Virasoro modes L−2 and L−1(= ∂). This allows us to obtain five different differential
equations for the n-point functions. As suggested by the results known for the Jacks [27],
all these differential equations are not independent and can be obtained from one another by
commutation with 27–29. Of particular interest to us is the following equation, obtained by
using equation (55) in equation (32):

0 =
n∑

j=1

〈�(z1) · · · (z2
jW

(3)
−2 + 2zjW

(3)
−1 + ω(3)

)
�(zj ) · · · �(zn)〉 = (56)

n∑
j=1

〈�(z1) · · ·
[ −8a

5� + 1
z2
j

(
∂2
j − � + 1

2
L−2

)
− 2azj ∂j − 2

3
a�

]
�(zj ) · · · �(zn)〉 (57)

where a = −3ω(3)/(2�). Note that the constant a factorizes in the above equations, and we
are left with

n∑
j=1

〈�(z1)

[
z2
j

(
∂2
j − � + 1

2
L−2

)
+

5� + 1

4
zj ∂j +

�(5� + 1)

12

]
�(zj ) · · · �(zn)〉 = 0. (58)

This means that the sign of ω(3) does not modify the differential equation. This is consistent
with the fact that, as previously mentioned, correlation functions are invariant under the charge
conjugation �1 ↔ �2. Taking into account the following relations:∑

k

zj ∂j 〈�(z1) · · · �(zn)〉 = −n�〈�(z1) · · · �(zn)〉 (59)

〈�(z1) · · · L−2�(zj ) · · · �(zn)〉 =
n∑

i=1
i �=j

(
�

(zj − zi)2
+

∂i

zj − zi

)
〈�(z1) · · · �(zj ) · · · �(zn)〉,

(60)

10
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and using equation (53), we can write down the second-order differential equation for
〈�(z1) · · · �(zn)〉 where the coefficients γi(r) (i = 1, 2, 3) are given as functions of r. We
have found

HWA2〈�(z1) · · · �(zn)〉 = 0, (61)

where HWA2 is

HWA2 =
n∑

j=1

(zj ∂j )
2 + γ1(r)

∑
i �=j

z2
j

(zj − zi)2
+ γ2

∑
i �=j

zizj (∂j − ∂i)

(zj − zi)
+ nγ3(r) (62)

γ1(r) = − r(r + 3)

18
γ2(r) = 3 + r

12
γ3 = − r(4r − 3)

27
. (63)

Analogously to what we have seen in section (5.2), we use the function φ(r,3)({zi}) defined
in equation (41) to transform the above second-order differential equation into the Calogero
Hamiltonian (3)(see the appendix):

[φ(r,3)({zi})]HWA2(r)[φ(r,3)({zi})]−1 = HCS(α) − E(r) (64)

with

α = − 4

r − 1
E(r) = nr

216
(−3 + n)(9 − 21r + n(3 + 5r)). (65)

By comparing equations (64) and (65) with equations (3)–(5), it is straightforward to see that
equations (21)–(23) are verified for k = 3. As we have said for the case k = 2, the Jack solution
(4) of the eigenvalue equation (3) is the only solution consistent with the single-channel fusion
rules of the Z

(r)
3 parafermionic algebra, i.e. it is the only polynomial solution.

5.4. WAk−1(k + 1, k + r) models

We complete the proof of equations (21)–(23) for general k, i.e. for the general theory
WAk−1(k+1, k+r). The parafermions operators �1 and �k−1 are identified with the following
primary fields:

�1 = �(1,1...,r+1|1,...,1) = 
(1,1,...,1|2,1,...,1) (66)

�k−1 = �(r+1,1...,1|1,...,1) = 
(1,1,...,1|1,1,...,2) (67)

with conformal dimension �:

� = �(1,1,...,1|2,1,...,1) = �(1,1,...,1|1,1,...,2) = r

2

k − 1

k
, (68)

where we have used the identifications (17). In the following, we set �=̂�1 and we compute
the n-point function 〈�(z1) · · · �(zn)〉. The results we obtain are valid also for the n-point
correlation functions of the conjugate field �k−1.

The field � is expected to have k − 2 null-vectors at level 1 and one null-vector at level
2. But the situation is slightly more complex since the descendants of these null states also
decouple from the theory, and in general the embedding of these null-state modules is non-
trivial. Nevertheless, using the characters of the WAk−1 theories [12, 13], or equivalently the
reflections along the roots in the Coulomb gas language, it is rather straightforward to count
the number of remaining independent fields at a given level. In particular, we showed that the
representation module of �1 (or �k−1) only has one state at level 1, and two independent states
at level 2. This statement does not hold for the other parafermionic fields �n, n = 2, . . . , k−2:
in that case there are three independent states at level 2. This is not surprising because the
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conjecture relating parafermionic correlation functions and Jack polynomials only holds for
the parafermions with the lowest dimension: �1 and �k−1.

For these two fields, the first two levels are completely spanned by the Virasoro modes,
and all the additional modes corresponding to the currents W(s), s = 3, . . . k − 1 only appear
in null-vectors. In particular, the fields W

(3)
−2 � and W

(3)
−1 � can be written as linear combination

of Virasoro modes:(
W

(3)
−1 + aL−1

)
� = 0(

W
(3)
−2 + μL2

−1 + νL−2

)
� = 0, (69)

where the constants a, μ and ν are computed below. This result is consistent with the works
[28, 29], where it was shown that starting precisely from the null-vector conditions (69) (and
a chain of other conditions for the other currents) as hypotheses, one can rebuild the WAk−1

algebra.
The constants a, μ and ν can be determined by acting with positive Virasoro modes on

the null-vectors (69). We have obtained

a = −3ω(3)

2�
(70)

μ = a
2(2� + c)

(−10� + 16�2 + 2c� + c)
= a

2k(1 + k)

(rk2 + k2 − 2k − 4r)
(71)

ν = a
16�(� − 1)

(−10� + 16�2 + 2c� + c)
= −μ

2(k + r)

k(1 + k)
, (72)

where ω(3) = ±ω
(3)

(1,1,...,1|2,1,...,1) for � = �±1.
Replacing k = 3 in the above equation, one obtains those given in equation (55). Note

however that the coefficients given above are different from those obtained by replacing the
values of � of equation (68) into the coefficients of equation (55). This is quite natural as
one expects that the presence of the higher spin currents in the chiral algebra modifies the
coefficients of the null-vector conditions.

The differential equation satisfied for 〈�(z1) · · · �(zn)〉 for the general theory WAk−1

can then be obtained in the same fashion as in the case k = 3; see section (5.3.2). By using
equations (69)–(72) into equation (32) we obtain

HWAk−1〈�(z1) · · · �(zn)〉 = 0, (73)

where the differential operator HWAk−1 , whose coefficients are given as functions of r and k, is
defined as

HWAk−1 =
∑

i

(zi∂i)
2 + γ1(k, r)

∑
i �=j

z2
j

(zj − zi)2
+ γ2(k, r)

∑
i �=j

zizj (∂j − ∂i)

(zj − zi)
+ nγ3(k, r) (74)

γ1 = − r(rk − r + k2 − k)

k2(k + 1)
γ2 = r + k

k(k + 1)
γ3 = − r(k − 1)(2rk − k − 2r)

6k2
. (75)

As we have seen in the case k = 3, see section (5.3.2), the constant a can be simplified
during the derivation of the above equation. Equation (75) is then independent of the
sign of ω(3) = ±ω

(3)

(1,1,...,1|2,1,...,1). Once again, this is consistent with the invariance of the
parafermionic correlation functions under charge conjugation (i → k − i). As expected, we
recover the pure Virasoro case when k = 2.

12
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Using the function φ(r,k), defined in equation (41), we can transform the above differential
equation into the Calogero Hamiltonian. We have

[φ(r,k)({zi})]HWAk−1 [φ(r,k)({zi})]−1 = HCS(α) − E(r) (76)

with

α = − k + 1

r − 1
E(r) = nr(k − n)[−2nr + k2(−1 + 2r) − k(n − r + nr)]

6k2(1 + k)
. (77)

By comparing equations (76) and (77) with equations (3)–(5), it is straightforward to see that
equations (21)–(23) are verified for each k. This completes the proof of the conjecture relating
Jack wavefunctions to WAk−1(k + 1, k + r) theories.

6. Conclusion

In this paper, we computed the n-point correlation function of the field �1 = 
(1,...,1|2,1,...,1)

and of the field �k−1 = 
(1,...,1|1,1,...,2) belonging to the Kac table of the minimal model
WAk−1(k + 1, k + r). By using the Ward identities associated with the spin 3 current W(3)(z)

and the degeneracy properties of the �1 and �k−1 representations, we showed that their
n-point correlation functions satisfy a second-order differential equation. This equation can be
transformed into a Calogero Hamiltonian with negative rational coupling α = −(k+1)/(r−1).
This completes the proof of the conjecture which states that the n-point correlation functions
of �1 (�k−1) can be written in terms of a single Jack polynomial.

Acknowledgments

The authors would like to thank E Ardonne, Vl Dotsenko and N Regnault for very helpful
discussions. BE also wishes to thank B A Bernevig for explaining the nature of the additional
differential equations satisfied by the Jack polynomials. RS acknowledges conversations with
N Cooper, Th Jolicoeur, V Fateev and S Ribault.

Appendix

In order to derive the Hamiltonians HWAk−1 from the null-vector conditions, the following
relation is quite useful:

∑
i �=j

(
z2
i ∂j

zi − zj

)
〈�(z1) · · · �(zn)〉 =

⎛
⎝n� − 1

2

∑
i �=j

zizj (∂j − ∂i)

(zj − zi)

⎞
⎠ 〈�(z1) · · · �(zn)〉

. (A.1)

In order to derive this relation, it is convenient to introduce the following differential operators:

D =
n∑

i=1

zi∂i (A.2)

T =
n∑

i=1

∂i (A.3)

O =
n∑

i,j=1
i �=j

zizj (∂i − ∂j )

(zi − zj )
(A.4)

13
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one has
n∑

i,j=1
i �=j

(
z2
j ∂i

zj − zi

)
=

∑
i �=j

(
zj ∂i +

zizj ∂i

zj − zi

)
(A.5)

=
∑

j

zj

∑
i �=j

∂i − 1

2

∑
i �=j

zizj (∂i − ∂j )

(zi − zj )
(A.6)

=
∑

j

zj

[
−∂j +

∑
i

∂i

]
− 1

2
O (A.7)

= −D +

⎛
⎝∑

j

zj

⎞
⎠ T − 1

2
O. (A.8)

The action on a correlation function 〈�(z1) · · · �(zn)〉 greatly simplifies since

T 〈�(z1) · · · �(zn)〉 = 0 (A.9)

D〈�(z1) · · · �(zn)〉 = −n�〈�(z1) · · · �(zn)〉, (A.10)

and one obtains A.1.
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